Predicting the top and bottom ranks of billboard songs using Machine Learning

نویسندگان

  • Vivek Datla
  • Abhinav Vishnu
چکیده

The music industry is a $130 billion industry. Predicting whether a song catches the pulse of the audience impacts the industry. In this paper we analyze language inside the lyrics of the songs using several computational linguistic algorithms and predict whether a song would make to the top or bottom of the billboard rankings based on the language features. We trained and tested an SVM classifier with a radial kernel function on the linguistic features. Results indicate that we can classify whether a song belongs to top and bottom of the billboard charts with a precision of 0.76.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Analysis of the Relationship between Harmonic Surprise and Preference in Popular Music

Studies have shown that some musical pieces may preferentially activate reward centers in the brain. Less is known, however, about the structural aspects of music that are associated with this activation. Based on the music cognition literature, we propose two hypotheses for why some musical pieces are preferred over others. The first, the Absolute-Surprise Hypothesis, states that unexpected ev...

متن کامل

Application of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements

This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...

متن کامل

Correlating Extracted and Ground-Truth Harmonic Data in Music Retrieval Tasks

We show that traditional music information retrieval tasks with well-chosen parameters perform similarly using computationally extracted chord annotations and groundtruth annotations. Using a collection of Billboard songs with provided ground-truth chord labels, we use established chord identification algorithms to produce a corresponding extracted chord label dataset. We implement methods to c...

متن کامل

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

On the Effect of Using Games, Songs, and Stories on Young Iranian EFL Learners' Achievement

     The objective of the present study was to identify and examine the influence of instructional tools, namely, games, songs and stories on young Iranian EFL learners’ achievement utilizing a quantitative design. To conduct the study 65 Iranian EFL learners, divided into an experimental group and a control group, learning English at Navid English Institute, Shiraz, Iran, participated in the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.01283  شماره 

صفحات  -

تاریخ انتشار 2015